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I. INTRODUCTION

During the contract period the work focused on two activities: studies of high energy
electron acceleration and studies of the Alfvéen maser. The work on acceleration focused
on determining the intensity and scale lengths required to accelerate electrons to energies
of 5 MeV or more. It was found in earlier work, that a very high intensity of 20 W/cm?
is required for this purpose in the nighttime ionosphere, while the optimum frequency is
roughly twice the electron gyrofrequency. During the present contract period, a diffusion
code which solves the Fokker-Planck equation along the Hamiltonian surfaces to determine
the evolution of the distribution function was completed. Intensities roughly a factor of
four over threshold are required to yield good agreement between the particle and diffusion
codes. The diffusion code runs far more rapidly than the particle code and allows us to
make broad studies of parameter space. The work led to two manuscripts submitted for
publication to Physical Review Letters and Journal of Geophysical Research. These are

included in Appendix A.

The work on the Alfven maser started by determining the mode structure of low-
order shear Alfvén modes in the magnetosphere, including their transverse structure, and
ensuring that their coupling to the compressive modes is weak. With the study of the
mode structure completed. resonant acceleration mechanisms to determine if the Alfven
wave alone is sufficient to precipitate high energy ions were investigated. The results
indicate that localized. low-order MHD shear Alfven waves are not sufficient to precipitate
a large number of particles. It was, however, found that parallel electric fields caused by
plasma kinetic effects in conjunction with values of k; p; ~ 0.1 can induce significant high
energy particle precipitation for electric fields above a threshold value which was derived.
Such waves can propagate inside natural or induced magnetospheric ducts. We note that

the physical mechanism of resonant excitation described here is quite different physically

from previous schemes discussed by Trakhtengerts and co-workers.




II. IONOSPHERIC DIFFUSION

A. Test-Particle Resulus

The diffusion code which we have writcen is based on the concepts of stochasticity and
resonance overlap.! These concepts have played an increasingly important role in plasma

physics during the last decade. Our basic particle Hamiltonian may be written?

H= [(cP -qA)? + m2c4] 12 + ¢® = mc®y + ¢9, (2.1)
where
A = A k” : LA ~ kL . - B -
=i sinéx + Aj cospéy — AlT sinye, + zHgéy,

® = &g sinp, (2.2)
1,/) = kJ_I-f-k"Z—wt,
and ¢ is the particle’s charge. This Hamiltonian represents single particle in an applied

electromagnetic wave propagating obliquely with respect to a magnetic field. We now use

a series of canonical transformations to reduce the Hamiltonian to the form?
H~ Hy + H;, (2.3)

The zero-order Hamiltonian is given by

Pﬁ )1/2 w

2
Hozmc2(1+—p-+-—-+ _k—p”
dl

m2c? m2c? (24)

2 w
=mc™Yo = 7P|

ky

where p, and p) are momentume perpendicular and parallel to the magnetic field, and the

first-order Hamiltonian is given by
[ o]
Hy= Y Zisin(kyz +16), (2.5)
l=~00
where 6 is the gyroangle and

2 Ql
Z =Ti{el [iﬂ sin o — —q-—,—cosa} Ji(kLp)

Yo gl me lgl & oc

+ ez%]{(kw) + ea%’YoJl(kl/’)}’
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with " A A
it el .
mc? mce? mc?

€y

Here. o is the angle of wave propagation with respect to the magnetic field and Q is the

magnitude of the nonrelativisitic gyrofrequency.

Resonances occur when 1;1 +18=0o0r
w—— - — =0, (2.8)

a result which is well-known from linear plasma theory. The resonance surfaces are elliptic
when the H-surfaces are hyperbolic and vice-versa. If the wave amplitude is small, than
an electron will be affected by at most one resonance. In this case, all but that single

resonance’s contribution to the Hamiltonian can be ignored, and the Hamiltonian becomes
H = Hy(py,pL) + Zisin(kyz), (2.9)

where > has been re-defined to absorb /8. In this re-defined coordinate system, the reso-

nance occurs at a point (py,, pLr) where z = 0. Writing

Ho(pypr) ~ Ho(pyrooir) + 5 —=5-| (Py —Pyr)"s (2.10)
2 Bp" .
and letting
0*H,
Mt= , 2.11
o | (2.11)
we find that the Hamiltonian becomes
1 .
m(p” — p”,-)2 + Z; sm(k”z), (2.12)

which is just the standard pendulum Hamiltonian.! The trapping width and the bounce

frequency are given by

Apy = 4|MZ,|'? (2.13)

and
wy = ky|Zo/ MM, (2.14)

respectively.

[t is important to note that the term “trapped” has a very specific meaning: 1t refers

to orbits close enough to resonancce 5o that within the rest frame of the resonance (not

3




the wave) the electrons undergo libratory rather than rotatory moiion. Electrons not
clos: 10 a resonance still undergo acceleration but it is far weaker than the acceleration
undergone Ly those which are trapped. Standard rf heating schemes make use of the
resonant acceleration just described. Of course, acceleration is limited by the trapping
width. While this limitation is of no importance in schemes to heat a bulk plasma to
moderate energies, it is of great importance in schemes to heat electrons to ultrarelativistic
energies. In this latter case, a stochastic mechanism is needed to break the constraint
imposed by the finite trapping widths of the individual resonances. The separation on an

H-surface between two adjacent resonances is given by

mCZQk”

épy = —————, . 2.15
Py o? — kﬁcl ( )

The stochasticity threshold condition based on the overlap criterion now becomes®
41 > 1 (2.16)

QN

Once this threshold has been exceeded, it is possible to accelerate electrons from resonance
to resonance. We can determine in this way the intensity required to accelerate ionsspheric

electrons to 10 MeV or more. These calculations may be found in reference 2.

B. Diffusion Equation

One can obtain the basic diffusion equation using either a Fokker-Planck approach®~*

or a quasilinear approach.®~7 In either case, one obtains the equation

of o, df
S =5 (D5). (2.17)

The Hamiltonian is a function of py and p,; thus, it is convenient to start with the

relativistic diffusion equation in cylindrical coordinates

of 1 9 [ 0 0 Jd [ 0 15}

Y o= 2 (D= + Dis oV f| 4 == (Dyy==— + Dy =) f|. (218

ot~ propa “P.L( L"(?p” _L.Lap‘L)f;,'% a1 ( ""é)p” + uJ,apl)f, (2.18)
where

Dy =/0 dr {py(t)py(t + 7)),
D= [ ariputpute+ ) (2.19)
Dyy=Dyy = /0 dr (poL()py(t + 7)),
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The angular brackets indicate an average over the gyroangle. It is assumed that any
initially inkuinegeneity in the angular distribution is rapidly smoothed cut. Integrating

over unperturbed orbits —the standard approxiu.ation of ¢r~<ilinear theory——we find

Dnn= Z 215(«4——&—[—9)

ny v
- ® 2 k 0
D, = S(mQ)? S _oien 28
Dy = Z(me) 1_2.00: ” z26(w - 7). (2.20)
Eypy 182
Dy, =Dy = “kquI_E_OO: L z2 ( . .,)-

where Z; are resonance coefficients from Eq. (2.6) and é(z) indicates the usual Dirac é-

function.

These diffusion coefficients are not useful as they stand because they do not take into
account the decorrelation due to scochasticity which results in their broadening.® Here, we
will assume that the é-functions are broadened by an amount which equals the trapping
widths of the undisturbed resonances. This assumption works well in practice as will
shortly be apparent from our results. Thus, we replace the §-function by a function f(x),

where / 2|
) Vdwy, if |zf < 2wy 511
fz) = {0. if |z} > 2wy (2:21)

The quantity w, corresponds to the bounce frequency in the Ithe resonance.
Because the Hamiltonian H is a conserved quantity, the diffusion proceeds along a

constant H-surface. and we can reduce the diffusion equation to one dimension. We replace

the coordinates (pj;,p.) with (H,7y) and obtain the diffusion equation in the form

af 19 of o
3 = 73, ("Pmg ) (2.22)
where
_ Z 1/2 £( -
D= 57 W ) }; (2" e, (223)

Note that while the problem has been reduced to one dimension, it is parameterized by
H. and Eq. (2.23) must be solved for the entire range of H-values important in any given

problem.

We now must diseretize Eqs. (2.22) and (2.23) so that they can be solved numerically.

The way 1 which we have defined D4 implies that its derivative is everywhe. e zero except

5




on a countable set of points where it becomes infiniie: hence, the discretization requires
great care. \We use a finite element discretization approach which effectively averages the
derivatives. including the é-functions, over a range in %.>1% Multiplying Eq. (2.22) by
v9( 7). where g{v) 1s a weight "unction to be made explicit shortly, and integrating over

the domain I' = (Ymin, Ymax ), We find

/m( —dw— / Dw.,gggfd (2.24)

where we have used integration by parts and particle conservation to eliminate the second
derivative of f with respect to v. Dividing the range T into N equal sized elements, we

may write f as
N

f=" F%;(), (2.25)

=1
where the 1;(v) are the basis functions for the elements, defined so that
(Y= Yi-1/(¥i = Yi-1, Vi1 Sv< v

Yo = 4 (Yier =1/ (vier = %)y % 9 < Vi (2.26)
0, otherwise

Using the v; as weighting functions and defining the matrices A and B, such that

oY INY;
A = / Wiy dy, B;y=—-— | —D d~, 2.27)
J - 3T ay J Oy WY A B (
we find of
A. = 2.28)
F =B-f, (2.28)

where f indicates the vector consisting of the f;. Since A and B are both tridiagonal,

Eq. (2.27) is not difficult to solve.

We have tested the code by running it for cases where the diffusion coefficient has
analytical solutions and found the agreement between numerical and analytical results to
be excellent. Ve have also found the number of particles to be typically constant to better

than one part in 1073,

C. Computational Results

In all our numerical calculations, we have taken the initial distribution to be a é-
function at ¥ = 1 and we have varied our parameters over a wide range of wave ener-

gies. The parameter values we have chosen are consistent with the daytime and nighttime

6




doncspieres L emiciad mstances, we Lave compared single particle caleulations with the
vesults rom the dithision codes T these caleulations, we have used 256 particles. While
“his runber of partiies s not large enongl to give us a good solution for the overall evo-
Tation of the distribution fncetions, it is sufficient to allow us to solve for crucial statistical
narameters such < the average distance travelled by the electrons and the first 1two mo-
ments:  ~ —~y0 and (1~ —~, 7). where ~, U~ initial y-value, equals one. We carry out our
studies for a length of time 32t = 30.000. which corresponds typically to travel distance of
abont 20 km for the electrons.”

° and

Firsr, we consider the diffusion due to a R-x mode with w/Q = 1.97. o = S0
~p =03, The value =, 'Q = 0.3 corresponds to the nighttime ionosphere at 130 km.!!

T rirestiold for the onser of stochasticnty 1s €ips ~ 0.2.

We carry out aur comparison for - ave amplitudes ranging from 0.19 to 10.0. The
variation of several quantities is shown in Fig. 1 for ¢ = 0.19. The quantity ((7 — ~v9)?)
I~ weenn to increase noan approximately linear tashion as expected from the Fokker-Planck
rep.tion. For this set of parameters, D.., eventually becemes very small, and ((v — 70)?%)
datrens out. but that does not occur until 2t > 3000. The quantity D/Dgr, which is
the ratio of the orbit calculation of {{(v — %9)?) to that obtained from the diffusion code.
deviates significantly from unity at earlier times but settles down close to its asymptotic
value for Qt 2 750. The deviation from - uweiinear behovior at early times is largely due
to two effects. stickiness and excess coherence due to a small number of resonances.? The
quantities 2y and (2} 519 correspond to the average distance travelled for all the electrons

and oy those electrons with - = 10. These two quantities become increasingly equal at

laree times as an inereasing fraction of the electrons surpass the value v = 10. We can
. ~ y >
estimnate the value L7, to be-
. > il
ve =0y = Likyesfuy > ket Jo (2.29)

whictt hoids for nghly volauvizric electrons. The solid line in Figs. 1d-e 15 given by
Eqo 2200 and rhe deviation indicates that not all the electrons have become relativistic

The Gaction of clections have = > 10 1s plotred in Fig. 2. The curves obtained from
the dttnson code csolid ey and thie particle code tdotted line) agree quite well. Sumilar

resnits pre shown in Figs 3 6 for wave amplitudes given by ¢ = 3.99 and ¢ = 10.0. The

-

agreement only imoroves i these voses. In Fig. 7. we show D /D¢ in the range € = 0.19

-
{




to e = 10.0. The quasilinear theory embodied in our diffusion code evidently works well

over this range.

We next consider the diff _sion due to the L-o mode with «/§2 = 2.6, « = 80°. and
~p/80 = 0.3, The threshold for stochastic acceleration is given roughly by ens = 0.4
Resnlts for several diYerent energies can be found in Figs. 8-10. In this case, a substantial
fraction of the electrons are not stochastic even when the threshold is exceeded, and that
has an important effect on D/ Doy, (7}, and (z)4>10. Nonetheless. the fraction of electrons

with 4 > 10 agrees well with both methods.

The results of our study of electron acceleration generzlly confirm the results obtained
using simpler methods in reference 2. In particular, large intensities of roughly 20 W/cm?
are needed to reach the required stochasticity thresholds and acceleration distance on the
order ¢f 20 km are 1eeded in order to accelerate a substantial fraction of electrons beyond
5 MeV. The power requirements appear to be well beyond what can be managed with
present-dey devices. Other mechanisms based un field inhomogeneities, pre-acceleration,

and precipitation of already high energy particles remain to be more thoroughly exp'ored.




III. ALFVEN MASER

A. Overview

The Alfven maser | A-maser). as first described by Trakhtengerts and co-workers!? 13,
is based on enhancing the reflectivity of the Alfvén wave within a narrow tube ( ~ 10 km
« 10 km) along the field lines in the magnetosphere. This change in reflectivity could
be accomplished by rf heating of the 1onosphere in the region near the poles where the
magnetic field lines are tied down. Trakhtengerts and his colleagues focused primarily on
methods for generating the ion cyclotron instability, as was appropriate for the problem
of precipitating relarively low energy ions which he was considering. Our focus has been
the precipitation of higher energy ions and the exploration of resonant methods which can
accomplish this precipitation. Papadopoulos. et al.!* have shown that the mechanisms
discussed by Trakhtengerts and co-workers are insufficient for this purpose for several

reasons, IIZUHCI_VZ

(i) No specific wave mode that interacts strongly with energetic protons (€ > 1

MeV) was identified.

(11) The models rely on quasilinear wavepacket theory. As a result their applica-

bility 1s limited to proton energies below 1-2 MeV.

(11) The transverse variation of the medium and finite ion gyroradius effects were

ignored.

As a result. we concentrated on scenarios which excite the highly localized (m — o0)
poloidal oscillations of the magnetospheric cavity at the appropriate L value by modulated
RF heating of the F-region ionosphere. These modes are thought to be excited naturally

15.16 aloctron beams.!” surface waves due to the

by inverted ion distribution functions,
Kelvin-Helmholtz instability.'® 1% and/or external impulses.?®:2! These are monochromatic
field line oscillations and have often been observed in conjunction with energetic particle
precipitation. We have named the process Field Resonance Induced Precipitation (FRIP).
Notiwee that the phvaies of FRIP 15 completely different than the physies of the Trakht-
eneerts A-Maser. bised on guasilinear diffusion, both in the mode excitation processes as
well as the partiele preaipiration nrocess. The differences will be emphasized later on. The

two itportant 1ssues related to the feasibility of FRIP are

0




(1) Identification and verification of the physics releted to the induced energetic

proton precipitation.

(11) The requirements and location for exciting the appropriate tield line reso-

nances

These are discussed in the next section.

B. Radiation Belt Dynamics

Before entering the discussion of the physics issued related to the FRIP concept we
briefly present the parameters that control the trapping and the precipitation of the ener-
getic protons in the earth’s radiation belts. Figure 11 shows the trajectory of a trapped
particle in the earth’s dipole field. Particles trapped in the earth’s RB execute three types
of motions. First, a gyration about the magnetic field with the local gyrofrequency (2,

second a longitudinal motion governed by the effective potential energy,

uy = uB(s) (3.1)

where B is the magnetic field, s is the coordinate along a line of force and

2 2 1n2
_ UJ_ _ VTSN «&
#=38 7 2B (3.2)

1s the orbital magnetic moment; « is the angle between the velocity v and the field B. This
motion results in the particle bouncing between mirror points along the field line with a
frequency wy. Third is a slow azimuthal drift. These motions are shown in Fig. 11. The

value of the magnetic field Bg at the equator is given approximately by

3

Be(L) = 13

gauss (3.3)

while the average value ot the gyrofrequency in the dipole field is given by

Q= Qp=—r , (3.4)




where Qg = 3x10%/L% sec™!, G(a) = 1.3—.56 sin @, and F(a) >~ (-0.2 sina+0.Tsina+

. -y . . . . . . - .
2)/sin” a. In the absence of interactions, the magnetic moment p is an adiabatic invariant.

J=7{v-ds ,

which 1s associated with the bounce motion. There is also a third adiabatic invariant, the

The same holds true for the action

flux invariant ®. associated with the drift motion.

C. Induced Precipitation

Energetic protons will be confined in the radiation belts as long as their adiabatic
invariants are conserved. The rate at which protons enter the loss cone and precipitate
depends mainly on the time scale on which the adiabatic invariant J changes. Two general
types of processes exist. First, low frequency, random fluctuations will lead to a quasilinear,
diffusive random walk in J. Second, coherent fields can lead to resonant excitation and
stochasticity. It is this latter type of process which we are proposing to use, rather than

the former type proposed by Trakhtergents and co-workers.}?:13

The guiding center of a trapped particle oscillates between its mirror points with a

frequency given approximately by

T(MeV)

7 (3.5)

wp = 2.2
In general. the magnetic Held does not vary quadratically with distance along the field
line, leading to a significant anharmonicity in the bounce frequency. In other words,
«p = wp(JE), where 3¢ 1s the particle’s pitch angle at the equator, for particles with the
same value of T. However, this anharmonicity does not significantly alter the results and

does complicate the discussion. So, we ignore it here. Our equation of motion is given by

3 +w§s =0 , (3.6)
which comes from the Hamiltonian
2
ps 1 5
H,,:;z—,—’T-L--{»ijwisz =0 . (3.7)




Making the action-angle transformation,

pe = (2Inwy) /% cosb, s = (‘21’/771(.%)”2 sinf . (3.8)

the Hamiltonian becomes

Ho =wsl | (3.9)

with equations of motion

I=0, f=uw . (3.10)

The presence of electromagnetic forces with components parallel to B, will change
the value of J. Forces parallel to B can be due to parallel electric fields £y or due to
compressional magnetic perturbations b. The latter represent a form of Fermi acceleration.

In the presence of such forces, the equation of motion becomes

CE”(S, t) B Bb"(s, t)

5 (3.11)

S+wis=

The strongest interaction will of course occur for forces oscillating near w.

We now suppose that the fields are fluctuating with random time variations. Such
fluctuations induce random variations in the oscillation amplitude, causing a random walk
of a particle’s J value and a redistribution of J described by a Fokker-Planck equation.
Robertz and Schultz?? showed that spatial variations allow the oscillator to interact with
the fields at harmonics of the bounce frequency. However, the overall effectiveness of the
bounce resonance processes is reduced for oscillation amplitudes large with respect to the
scale of the spatial variations. For situations where u = const, the Fokker-Planck equation

describing the evolution of the distribution function f(ey,ey) is

o9 _ 0 p 0 5
at - Be”Dae” ’ (3.1-(1)

1k p( Ky, nw
—»,,Z”/ S T3k oy Kpllky, nes) u’" s (3.12b)

n=1}

12




where s,, is the maximum value of s in the unperturbed oscillation, the J, are Bessel

functions. and I, is the relevant power spectrum. These relations can be derived from

Eq. (3.11) by using second order perturbation theory and defining D as

2
<l8e) > (3.13)

Of greater interest to us is the case where we may assume Ey(s,t) = E, cos(ks — wt).

In later sections, we will explicitly consider Alfven waves in which case

* w
ks — ! .14
3 /; 225 ds' (3.14)

and E, becomes a weakly varying function of s. The effect is to add harmonics of the

fundamental wavenumber

(e o)
E, cos(ks — wt) — Z Epcos|[(2n + 1)ks — wt] , (3.15)
n=0
which has little impact on the final result. Our equation of motion now becomes
. E,
S+wls= ir;z— cos(ks — wt) (3.16)
Letting ¢ = ks and 7 = wyt, Eq. (3.16) becomes
. E,k
g+o= inwf cos(o — Qr) (3.17)
where 0 = w/wy. This equation of motion can be derived from the Hamiltonian
2 2 Eok
H=C2 4 T L orR- 2 sin(o - ¢) | (3.18)
2 2 mwy

where (R, ¢) are a canonical pair of variables. Making the action-angle transformation

o =(21)"*sin8, p, =(20)"/?cosb | (3.19)

13




so that in physical units I = (U — uBg)k?/muw3,, where U is the kinetic energy and Bg is

the magnetic field at the equation, our Hamiltonian now becomes

H=1+0QR—esin |(2)"/%sin6 — ¢| , (3.20)

where € = e £,k /mw? which is, to within a phase, the well-known Hamiltonian considered
by Karney?? in the context of rf heating. For a fixed value of € and Q, Karney showed that

the orbits are stochastic in the range

Q--/? < (2DY? < (4e)23(2/m)/® | (3.21)

where the latter value holds exactly in the limit (2I)/2 > § but yields a reasonable
approximation even when (2I)'/2 ~ Q. An illustration of the stochastic region for a fixed

value of {2 is shown in Fig. 12.

As an example, we find that if = 10, then the threshold for stochasticity is approx-
imately at € = 1; however, larger values are required to obtain significant acceleration. In

physical units, our conditions become

l €

1/2 o 2\ 1/2 1/3 2N\ 2/3
e <——eE° i) < (——“7; “N < (B (a—2Be . (3.22)
wB MWBUVAE WB dmvip wg ) MWBVAE W

where v4g = v4 at the equator. Writing

v o]

eE, _ 0.011??(,(mV/m)L$/2 ’
MWRBVAE T(MCV) (3 93)
7 2
2 — = 3.3(T(Mev)] L* ,
3mvi g

we see that at L = 4, and sctting as before {2 = 5, a field of 7.nV/m is needed to achieve
e = 5 for a 200 kev proton. At this value of E, protons are stochastic if 30 < [ < 430
and our 200 kev proton has I = 42. We see that if ¢ = 5 and 0 = 10 are maintained by
ramping up the E-field and the frequency, a parallel energy gain of 10 is possible, leading
to precipitation of most 200 kev protons. One can think of many other possible scenarios

for precipitation. As will be discussed later, such fields can be excited due to finite ion

14




syvroradius effects when Alfven field aligned resonances are driven by periodic heating of

the F-region.

D. Geomagnetic Field Tube Oscillations

A number of authors®*~26 have calculated the eigenfrequencies of magnetic field lines
for various distrizutions of v 4 along the magnetic field lines using the boundary condition
E(s = £!) = 0. This boundary condition is correct only for sufficiently large ionospheric
conductivities. The resonant frequencies are independent of the conductivity only when
v.4(s) = const and the conjugate ionospheres are symmetric. In this case, the fundamental

resonance frequency wo(L) 1s given by

VA4

Wo A
Lr,

(3.24)

where 7, is the earth radius. A complete analysis using the inhomogeneous wave equation
was performed by Arykov and Maltsev.?” The wave equation for guided Alfven waves is

given by

8 E 1 &2 E
5 78 = o 78%) (3.28)

In Eq. (3.25), the field curvature and the transverse dependence of v 4 are neglected. This

is correct for relatively small transverse dimensions.?® The resonator properties can be

described by introducing the function A, defined as®’

AFE /B, AX
£ = A B.rn (3.26)

where AT is the change of the ambient electric field E, in the ionosphere if the Pedersen

conductivity varies from Tpny by AX in the northern hemisphere; B,; is the magnetic
field un tie ionosphere. Note that if A = 1, then AT equals the polarization field in the
modified area. on condition that there is vacuum above the ionosphere. Assuming that
AT varies periodically with frequency w, the equation describing the excitation factor A

s

0? . w?

032 mrl - 0 ) (327)
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with the boundary conditions

c? JA
Ay — Py 5=, 3.98
T IrieTps 05 ’ (3.:23a)
2
A4y 04 o . (3.28b)

dmiwpy 08

The function 4 depends only on the frequency and on the characteristics of the resonator
only. Equation (3.28a) gives passive reflection of the guided waves from the southern
conjugate, while (3.28b) describes reflection and generation. For the magnetosplere. an

analogous excitation factor 4p defined by

1  Bo xE,AX

AB = —Agim rpyeat (3.29)
can be introduced. Following Arykov and Maltsev,?” we approximate v4(s) by
va(s) = vag (1 + s—z) 13.30)
a
In this case Eq. 3.27 can be solved to give
2 L g2 iu,—iu 3iuy+iu
RpEET ey e (331
where
NS
Rys= s (3.32a)
e ¢ lxa/TEEo, o)

- 4mwEpN s 2 + a?

u = /1 + a?w?/v}arctan(s/a) , (3.32¢)




In arder to analyze the situation further we note that using WKB thecry, we find

s TVag
= = : , 3.33
fil v;i(as) 2aarctan({/a) (3.33)

(o
o

where w, is the frequency of the fundamental mode. We now introduce the inhomogeneity
parameter A = [/a and the ratio of the ionospheric conductivity to the wave conductivity at
the equator. o = £,/X,,, where &,, = c?/4nvag. If A = 0, corresponding to a homogeneous

magnetosphere, we find

1= Ry P[5 (3-1)] + Ryexp [§i (§ +3)]

A=—7
= 1— RyRsexp (27.'2'“%)

, (3.34)

where

Rys=(1—-onc)/(1+0oNs) - (3.35)

Arylov and Maltsev?” calculate the value of A in the conjugate ionospheres. Our interest
here lies on the equatorial plane s = 0. The results are shown in Fig. 13, for symmetric
and antisymmetric ionospheres. The most interesting result is the one shown in Fig. 14
which shows the amplitude-frequency characteristic for Agp = i(va/w)(0A/0s). A strong

resonance is not possible on the odd harmonics, but only on the even ones, 1.e., w = 2nw,.

Using the simple model, v,y = v40(r,/7)%/?, where v, = 4.4x10® cm/sec is the Alfven
speed near the Earth’s surface and r, is the Earth’s radius, we find from integration of
Eq. (3.33) that w, = 6.8 x 1072 sec™! when L = 4. Hence, in the example of the previous

section in which w = 10wp = 2.5 sec™! we find that n ~ 18.

E. Stability of the Shear Alfvén Wave

In this section, we will show that the transverse mode structure can be determined
separately from the longitudinal structure and that the shear Alfvén wave is stable. We
have investigated both diffraction and mode-mode coupling and shown that they are com-
pletely negligible at the low parallel mode numbers of the shear Alfvén wave. Indeed, the
only limitation on the transverse size of the mode is that it must be large compared to an

ion gyroradius for the basic dispersion relation to be valid.

17




QOur starting point is the equations

VxB=-2K-E,
iy (3.36)
V x E = —B,
C

where, assuming we have low frequency modes, but keeping higher-order cyclotron correc-

tions, we have

1 Cz 1 wz 'C2 () 0
S ﬁﬁ:f) a
— ; C W
0 0 =

where, writing E = (E,, E2, E3)!, E, and E; are transverse to the zero-order magnetic
field and Ej; is directed along it. At low frequencies, Ej3 is essentially zero for consistency.
To drive an appropriate Fresnel criterion for Alfvén waves in magnetospheric flux tubes,

we first ignore geometric effects and obtain

2 2 il 3
1 (1) - i
det AN L, AT 20| =0 (3.38)
ROt 1+ (1+47) - <F
A ' A i
To lowest order in w?/Q?, we obtain the dispersion relation
2 2,2
2 W w*w
i = 24 22 (3.39)
kﬁ Q2 k2
when k3 > kj as in the case in a confined mode. We then find that
d: ki
2 i (3.40)

i

Thus, the more we reduce the transverse dimensions of the wave, the less it diffracts!
We conclude that diffraction imposes no limit on the transverse width of the mode. The
width need only be large enough to validate the dispersion relation, i.e., it must be large
compared to the ion gyroradius. This radius is roughly 10 m when L = 4. Hence. a

transverse width of a kilometer or more should be sufficient to provide confinement.

18




To investigate the effect of mode coupling, we first note that

9
Uy

=4rNkTB2? ~ 1074 (3.41)

o~

3
"4
when L = 4. Hence, acoustic coupling is completely negligible. To consider coupling to

the magnetosonic wave, we write Eq. (3.36) in dipole (Radoski) coordinates.?® It becomes

~ - . 2
L B, =2 (i”iE,, S Ed,) += (1 + %—) E,, (3.42a)
v

hoh, du Y h, \why why )
h; gmdnzgg(E%EV-j;EQ-f§<y+%)Ew (3.42b)
h,,lh,, %huEu = ——%—J-B,b, (3.42¢)
ﬁ;%%ﬂo = %By, (3.424d)
where for any quantity, we have let
X(p,v,8) = X(p)exp(isv + 1ma). (3.43)

Defining now,

&:%m :E
¢ . (3.44)
R h E¢ + h,,E

so that R; corresponds to the magnetosonic wave and R, corresponds to the shear Alfven
wave, we find that

e h,R
h2 Ou (m?hZ +s2RZ)

1010, o <h¢ 9 h,\ 1 9 (m*h} —s?h})
hyOuh,op "\ h, Ou by

2 2 2
— (E— + S—) huRl + %h“Rl (345)
4

_[hs O h,,) 2 0 mshyhy .
B h,z; e (3211 +m2hz) * 2,




where we neglect the vacuum and cyclotron contributions to Eq. (3.42). If either m or s
15 equal to zero, the magnetosonic wave is not coupled to the shear Alfven wave. That is
because curvature induces a field pointed in the radial direction to produce a component
m the parallel direction while a field pointed in the azimuthal direction is not affected by
curvature. Coupling cannot be induced in either case. Noting that at low paralle! mode
numbers all parallel derivatives 8/h,0u scale as 1/7p, and assuming as well that kjry > 1.

where

2 2
., m? s
we find that
/\2
Ry ~ 24 R,, (3.47)

R

where A, roughly equals the transverse width of the confined mode. Thus, the intensity
of the magnetosonic wave i1s a completely negligible fraction of the shear Alfven wave and

leads to negligible attenuation,

19 M
aala~ e (3.48)

Thus, we may set Ry = 0 and all dependence on m and s disappears in Eq. (3.42). We
may in principle determine the entire mode structure by solving one pair of equations, for

mnstance

1 0 I
——h,,Bu - Lqu‘E,t,,
hyh, Ou v? \
1 0 1w (3.49)
—h B
hoh, Ou +Bs c 7
and determining E, and B, through the relations
ZE, =2E,,
he h, s
m b - s 5 (3.50)
he © h,




Tliese results imply that the longitudinal and transverse parts separate and that the
transverse portion is substantially but not compietely arbitrary. From Eq. (3.40), we may

write a solntion which satisfies a particular set of boundary conditions as

Ey = g1(1) falv, 0),

) | (3.51)
B, = gi(#) fa(v, ).

The two functions ¢§(y) and ¢%(u) are determined from Eq. (3.49), which is purely lon-
eitudinal. Note that the transverse shape factor for £y and B, is necessarily the same.

Similarly, we may write

E, = hi(p)fsv, 0),

(3.52)
By = —h{(u)fs(v.0).

Our task now is to determine what constraints Eq. (3.50) imposes on the relationship
between f, and f;. Using Fourier transform methods, we can ~how that this equation

implies

s, 5,
a—éfﬁ(u.cﬁ) = E;fo(u.cb), (3.53)

and. what is more, Eq. (3.53) implies Eq. (3.50). Thus, we choose either f, or f; arbitrarily,

but the other is then fixed to within a constant.

As an example, we may consider

falv. ) = fg exp[—a(u —vy)* = b — 650)2], (3.54)

whichi corresponds to a localized Alfven mode. It follows that

b
fia= ;fa(v,é), (3.55)

so that the relative strength of these *wo shape faciors is determined by the fallod of the
overall amplitude. Equation {3.55) can be viewed as a result of quasi-neutrality. In this
example. the wave is linearly polarized. but other polarizations result when we allow a and

hto he complex. In particular. if we set




u = —=4, b= —=—41, (3.56)
2

we find that the resulting wave is circularly polarized. As a final poiat. we note that a
circularly symmeteric shape cannot in general be maintained along an entire Alfven tube.

To obtain a circularly svmmetric shape at a single point. we demand that

fa 3(ng&F{[d(V—1/0)?+b((p——¢0)2]1/2}, (3.57)

where @ = 1% and b = h% at that point. As h, and hy change along the field line, the
Vo Do P ¢ g

shape will becom.e assymmetric.

We inay thus determine the resonant frequencies by solving the one-dimensional lon-
situdinal equations. In the WKB approximation, we obtain the frequencies derived in the

previous section.

F. Kinetic Alfven Wave and Proton Precipitation

The analysis presented in the previous two sections was based on MHD equations,
In the presence of transverse gradients, the Alfvén mode has a singularity.'3-!® For time
varying waves this effect is manifested in an increase in the transverse wave vector of the

wave described by *?

dk Ow ox Ow .

%" o<’ ook (358
Under magnetospheric conditions this increase in the wave-number occurs over a very
fast scale.’” so that the transverie wave-vector k; becomes larger than ky. In order to
account for the transverse structure, non-ideal MHD effects must be incorporated. ". asse
are the electron inertia (¢/w,) and the ion gyroradius R;. Incorpurating these effects, the

dispersion relation becomes?!

w=kypea(l+ k147 . (3.59)

The value of A4 depends on the 1on temperature. For cold ions. J < m, /m,. and we find
¢/, while in the opposite limit we find A ~ V3R, /2. In the latter case, a kinetic analysis

vields s

2
o




AL
T= LA )expl—A) T

"

u.«'.:k

e

vd As (3.60)
where \, = lc'in, A = \T,/T., and I, is the modified Bessel function of the first kind.
This wave is known as the kinetic Alfven wave (INAW). The presence of a weak transverse

dispersion produces a small group velocity across B, given by

— =wk  A? . 3.61

Jk, * (3.61)
For k; < (w/Q.)l/2kl|, the presence of weak dispersion can trap the KAW near the mini-
mum of the transverse profile of v, and produce an Alfven waveguide for the KAW similar
to the one discussed in the previous sections for the shear Alfvén wave. Such a waveguide
can be produced by the plasmapause as well as by magnetospheric ducts. Notice that Pcl

pulsations have been interpreted as eigenmodes of such waveguides.32:33

The presence of guided AW modes allowed us to identify a new process that can
break the second adiabatic invariance of multi-Mev protons. The process relies on the fact
that the KAW has an electric field component E, parallel to the magnetic field. It is given
by

1~ L3R 2) (T/Ty)

wéB
2 — : (3.62)
Lxélqy [1 - fo(kazf)e-hﬂa] (T./T:)
For (k1 R)? <« 1, T. < T;, we find
k 2 p2
Ej=—. (KiRY . (3.63)

ki

Assuming, k; R, = 0.1 which is a reasonable value for the Pcl pulsations, we find that
E, ~ 10 mV/cm in the example of section 3B. This field strength can be obtained from

ground-based transmitters.




IV. EXPERIMENTAL REQUIREMENTS

A. Concept Suminary

The FRIP concept (Fig. 15) relies on injection of large amplitude ULF waves, gen-
erated by modulated heating of the ionosphere, into the geomagnetic force tube bounded
by the modified ionospheric area. If the modulation frequency equals one of the field tube
resonances or its harmonic, the plasma filled force tube behaves as a high Q cavity. As a
result the excitation level of its resonant modes (i.e., shear Alfven waves) increases sub-
stantially. The guided Alfvén waves are incompressive and their electric field is transverse
to the ambient magnetic field. However, magnetic field and plasma inhomogeneities, finite
ion Larmor radius effects and dynamics couple the shear Alfven wave, to a kinetic Alfvén
wave (IKAW). The kiretic Alfvén wave is also a confined mode in the presence of plasma

ducts.

The KAW has an electric field component parallel to the magnetic field. When the
value of the parallel electric field in the equatorial region exceeds values of mV/m protons
with Mev energy become strochastic (i.e., their second adiabatic invariant is broken) and

can thus precipitate.

The requirements for breakdown of the second adiabatic invariant and induced proton

precipitation can be approximated by

wp = 2nw, (1)

E, > T—gngRE (2)

where £, is the parallel electric field of the KAW, wy is the bounce frequency of the
precipitated protons, w, is the fundamental frequency of Alfvenic oscillations of the field
line with fixed ends, n the harmonic number, Rg the earth radius and L the magnetic shell

number, If we assume a simple model of the equatorial values in the radiation belts

1
n —5x10*i#/ 3 1)
e = L4 cm {
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and take

T
MeV

(5)

2.2
wh N —
L

We can express (1) and (2) in a quantitative fashion. The value of n required for precipi-

tating protons of energy T(MeV) at a value L is given by

L T
" T 55V Mev ®)
and the associated value of E, is given by
14, T -
E, > T(Me\/)mv/m (7)

Figure 16 gives the value of f, = w,/27 as a function of L for the model given by (3) and
(4).

For example, in order to precipitate 1 Mev protons at L = 6 we should drive the shell
at its fundamental frequency f, = .03 Hz, with sufficient strength that the value of E,
at the equator exceeds 2 mV/m. To precipitate 4 Mev protons we should drive the field
at its second harmonic, i.e., .06 Hz, and the required value of E, would be 8 mV/m, etc.
The practical implementation of the system depends on the efficiency with whi~l, ground
based HF power can be converted into KAW power in the magnetospheric cavity. This is

examined next.

B. System Requirements

In terms of implementing FRIP, the major issue concerns the efficiency with which
modulated HF power injected in the ionosphere is transformed into power in the KAW
in the equatorial region. We present below estimates based on modifying the ionospheric

conductivity of the lower ionosphere (D-E region) (Figure 15).

For a dipole magnetic field the value of AE of the electric field in the equatorial plane

is given by




where E, is the ionospheric fleld, ¢ the latitude and A is the amplitude frequency char-
acteristic of oscillating tube of force with allowance for the resonance properties. (A =
1-10). The value of the height integrated Pedersen conductivity £, varies from .1 mho
for night time conditions to 1-10 mho during daytime conditions. The value of E, is
of the order of 25 mV/m in the high latitude ionosphere and reaches values of 100-150
mV/m during substorms. It is obvious that night time conditions are favoied. Values of
AE; =~ 10 mV/m compatible with threshold require values of A &~ .1 mhc. This implies
an energy deposition into electrons of 10!'® eV/m? per ULF period. For an area of 25 km?,
the required energy deposition to electrons will be ~f the order 1-2 kJ. Since the frequency
is of the order of a second, the required power absorption by electrons will be of the order
of 1-2 kW. Given the inefficiency ot long time electron heating in the D-E region it will

require an HF facility with 1-2 MW ground power operating in the 4-7 MHz region.

C. K.y Research Issues

1. What is the value of the electric field generated in the region for frequencies in the
range .01-10 Hz as a function of the HF power density and frequency and ambient

conditions?

19

What is the Q value (i.e., value of A) for the magnetospheric shell cavity modes and

their harmonics?

3. What is the conversion efficiency from the shear to the kinetic Alfven wave in the

equatorial plane?
4. Are there any feedback effects due to the enhanced precipitation?

A combination of satellite and/or rocket evperiments in conjunction with the operation
of a strong high frequency (i.e., 5-12 MHz) heater can provide quantitative answers to
these questions. Preliminary experiments can be performed using the Tromso Max Planck
facility. However the planned HAARP facility could be a good instrument to investigate
the FRIP concept.
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FIGURE CAPTIONS

Time evolution of various quantities for w/Q = 1.97, w,/ = 0.3, a = 80°, and
¢ = 0.19. The wave is an R-x mode. The unmarked lines in d and c are obtained

assuming v; = njc.

Time evolution of F(§ > 10). Time evolution of various quantities for w/Q = 1.97,
wp/§ = 0.3, a = 80°, and € = 0.19. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

Time evolution of various quantities for w/Q = 1.97, w,/Q = 0.3, a = 80°, and
¢ = 3.9. The wave is an R-x mode. The unmarked lines in d and c are obtained

assuming v, = njic.

Time evolution of F(§ > 10). Time evolution of various quantities for w/§ = 1.97,
wp/ft = 0.3, a = 80°, and € = 3.9. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

Time evolution of various quantities for w/Q = 1.97, w,/Q = 0.3, @ = 80°, and
e = 10.0. The wave is an R-x mode. The unmarked lines in d and ¢ are obtained

assuming v, = njc.

Time evolution of F(§ > 10). Time evolution of various quantities for w/Q = 1.97,
wp/ = 0.3, a = 80°, and € = 10.0. The unmarked curve is from the diffusion code

and the marked curve is from the particle code.

D/Dgp as a function of wave amplitude. The scale of the x-axis is linear but the scale
from 0.19 to 0.99 is different than that fron 0.99 to 10.

Time evolution of various quantities for w/ = 2.6, w,/Q = 0.3, a = 80°, and
¢ = 0.427. The wave is an L-o mode. Some particles are accelerated in the negative
z-direction and the approximation v, = nj¢, given by the unmarked line, 1s no longer

adequate.

Time evolution of various quantities for w/Q = 2.6, w,/Q = 0.3, « = 80°, and € = 3.9.
The wave is an L-o mode. Some particles a: e accelerated in the negative z-direction

and the approximation v, = njc, given by the unmarked line, is no longer adequate.

Time evolution of various quantities for w/Q = 2.6, w,/Q = 0.3, a = 80°, and € = 10.0.
The wave is an L-o mode. Some particles are accelerated in the negative z-direction

and the approximation v, = nyc, given by the unmarked line. is no longer adequate.
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11.

13.

14.

16.

Schematic illustration of particle motion in the Earth’s ionosphere.

. The limits of the stochastic region of velocity space for 2 = 30.23. The crosses give

the numerically observed values [adapted from Ref. 23j.

Amplitude-frequency characteristics at the equatorial plane, assuming a) a symmetric

ionosphere, b) an assymetric ionosphere {adapted from Ref. 27].

Amplitude-frequency characteristics for Ag at the equatorial plane, assuming a ho-

mogeneous magnetosphere and a symmetric ionosphere [adapted from Ref. 27].

Shown is a schematic illustration of field resonance induced precipitation. A standing
kinetic Alfvéen wave has a component parallel to field lines and resonant with the

electron bounce motion which induces precipitation.

Frequency vs. length for a simple field model.
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DA T P A U W T L T

Nature of the Diffusion above the Chaotic Threshold
H. Karimabadi, C. R. Menyuk(%)

Deaprtment of Electrical and Computer Engineering
University of California, San Diego, California 92093

Abstract

The diffusion coefficient for particles in a magnetized plasma and in the presence of a coher-
ent wave was calculated numerically. The results were compared with the solution of a diffusion
equation based on the quasilinear theory. The ratio of the numerical to the quasilinear diffusion
coefficient D/Dqr was found to be between 0.9 and 1.4 for wave amplitudes sufficiently above the
stochasticity threshold. No coherent oscillation of D/D gL as a function of wave amplitude was

observed. The above results held up in all of our parameter study.

(a) Department of Electrical Engineering, University of Marvland, Baltimore, Maryland 21228.
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The quasilinear theory! and its domain of validity has remained an area of active research d:e
to its relevance to so many different areas of physics. Recent advances in nonlinear dvnamics have
revealed that even syvstems of low dimensionality can exhibit complex behavior. Thus, more recent
tests of the quasilinear theory have been for systems of low dimensionalities. Using the standard
map to model a chaotic system, several authors® found that the true diffusion oscillates about the
quasilinear value as a function of the nonlinearity parameter with the discrepancy between the two
reaching as high as 2.5. The key question is how much of the discrepancy is due to the nature of
the approximations made and how much is due to the limitations of quasilinear theory. In this
letter, we consider the validity of the quasilinear thecry in a physical system. We investigate the
problem of particle diffusion in a magnetized plasma and in the presence of a coherent wave. We
derive a diffusion equation and model the diffusion coefficient based on the resonance broadening
theory®. We have developed an algorithm that allows a rapid and accurate solution of the diffusion
equation. Thus we have been able to carry out a detailed study of the particle diffusion and its
comparison withe quasilinear theory.

In a magnetized plasma, there are many resonances given by w — kyvy = £Q/+. When the
wave amplitude is small, the resonances are s-parated and the particle motion is integrable. As
the wave amplitude becomes larger than a certain threshold, the acjacent resonances overlap and
particle motion becomes chaotic! and can in turn be desribed by a diffusion equation. We start our
analysis with the usual diffusion equation in 2-D that is averaged over the gyroangle. The solution
of the 2-D diffusion equation is in general difficult and comput..tionally expensive. It has, however,
been shown® that the particles follow the constant Hamiltonian surface in phase space. Thus by
transforming to a coordinate system that has the Hamiltonian as one of the axes, we can further
reduce the diffusion equation to 1-D. The decorr “ion due to stochasticity is incorporated into
the diffusion coeeficient by means of the resonanc. oroadening theory. The usual delta function
associated with each resonance in the diffusion coefficient is now replaced by a box having a width
of 2.y and a height proportional to 1/ws, where wy is the bounce frequency. The resulting diffusion

equation is:

Q_fiz.‘l;_.a_(.yp ?i>’ (la)




wnere
[o <}

T w Zy ML
Dpy = ot 30 () A i)
172 2 ; ey
8(1_1‘\[%?) / t=—00 me

In the regions where resonances o-.erlap, the height of the boxes adc. The resulting difusion
coefficient is quite bumpy as shown in Figure 1 and we use the finite element technique to soive
the diffusion equation.

We have tested the code by running it for cases where the diffusion equation has analytic
solutions and found the agreement between the results of simziation and analysis to be exceuent.
The number of particles are typically constant to t2tter than one part in 103,

In order to test the quasilinear theory, we have solved the diffusion equation for many different
parameters and compared the results with exact orbit calculations. e take the initial particle
distribution function to be a delta function centered at 4 = 1. In the exact orbit calculations. we
follow the _rbits of 256 particles, all with initial ¥ = 1 and phases distributed uniformly between 0
and 27, up to 2t = 3000. The reason for the choice of the integration time is made clear below. The
resulting distribution function is very bumpy due to the small number of particles used. To obtain
smooth distributions, millions of particles would need to be used - an approach which is both both
impractical and unnecessary. Instead, we compare the moments of the two distribution functions.
The small number of particles which we use is sufficient ia this case to yield an accurate result. In
what follows, we use the quantities < ¥ — 7, >=< Ay > and < (7 - 7,)° >=< (A7) > to make
the comparison, where 7, is the initial 4 of the particles and the brackets indicate an average oter

the initial conditions:
I (7 = 1) f(7, )7
I f(t)dy

(V]
(V5]
~—

2
<(r=7)" >=

Note that D, x< (A7)? >.

We present the results for two sets of parameters: First, we consider the diffusion due to a
R-x mode with w/Q = 1.97, a = 80°, and w,/ = 0.3. The values of stochasticity threshold
€inrs calculated from apalysis and simulations are 0.19 and 0.143, respectively. Ve carry out our
comgarison for wave amplitudes ranging from 0.19 to 10. The variation of several quantities as
functions of time are snown in Fig.2 for € = 0.19. The quantity < {Ay)? > is seen to follow a linear
increase in time in accord with the underlying assumptions built into the Fokker-Planck equation.

The particles have not had enough time to sample all the available resonances and as a result the




quantity < (A‘f)2 > increases with time. Once the particles reach the energies beyvond which [,
becomes very small. the < (Ay)* > flattens out as a function of time and diffusion stops. Fur the
parameters of Fig.2, the flattening out does not happen until 2¢ > 3000.

The quantity D/Dg which is the ratio of the exact orbit calculation of < (.’5.7)2 > to that
obtained from the diffusion code, deviates significantly from unity at early times (Fig.10c) but setties
down close to its asymptotic value for Q¢ & 750. This is expected since the diffusion formalism is
strictly valid for times long compared with correlation time scales. Sirnilar results were also seen
at higher amplitudes.

The deviation of particle motion from the predicted quasilinear diffusion at early times can
occur due to at least two effects: First, there can exist small but finite islands of stability within
an otherwise stochastic phase space. A particle coming close to such an island can get temporarily
trapped. Such stickinessin phase space can obviously have an effect on the diffusion of the particles.
As it turns out, however, this effect is not that important in general and does not play a significant
role for 2t 2 750. As we mentioned earlier, the trapping width increases as a function of harmonic
nuinber and in the transition to global chaos, the border of chaos lies at the lowest energies. Since
we start the particles at ¥ = 1, and the stickiness is most important at the border of chaos which
is also at ¥ ~ 1, the particles often experience some initial stickiness; however, once the particles
reach the higher energies, they diffuse freely. Thus, there exists a finite time before all the particles
can diffuse freely. The second source of deviation from the predicted quasilinear behavior is that
the particles may initially sample a few resonances in which case the motion is closer to a coherent
acceleration than diffusion. The first effect results in a retardation in the diffusion and the second
effect leads to diffusion larger than Dgy. The balance between these two effects determines D/ Dy,
at early times. For 0t 2 750, the above two effects become much less important.

We have plotted < v > / < 9, > and D/Dgq at Qt = 3000, for a range of wave amplitudes
as shown in Fig.3. The quasilinear theory arpears to be quite adequate in describing the particle
motion over this rather large range in wave amplitude. For € > 10, the particle motion approaches
the integrable regime of unmagnetized plasma in which case the diffusion equation would no longer
be valid. The deviation of D/Dg, from unity as a function of wave amplitude has a sporadic

behavior and does not seem to follow a nice osciilating pattern. In short, we have found no evidence
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for oscillations of D/D gy as a function of wave ampiitude, in contrast to eariier studies based on
the standard mapping®. Furthermore, the fuctuation amplitude of D/Dgqr is much smaller than
that seen in previous numerical work. The presence of resonances of different sizes ciearly leads to
averaging beyond that which is found in the standard map and thus to a closer correspondence to
quasilinear theory. These results suggest that the standard map is not an ideal paradigm for real,
physical systems.

Next, we consider the diffusion eqn due to the L-o mode with w/Qd = 2.6, a = 80°, and
wp/S = 0.3. The value of threshold based on analysis is 0.42, and the wave amplitude necessary ‘o
accelerate 1% and 60% of the particles stochastically from zero energy is 0.4 and 0.73, respectively.
The quantity < Ay > / < Ay >qy is well below unity for € = 0.43 and it does not reach unity
until the wave amplitude has been increased to € ~ 1.5. For € & 1.5, the < A7 > / < A% >g has
small fluctuations about unity. The < Ay > was obtained by using H = 1. Phase effects are
important for the L-o mode and the ¢h,y depends strongly on the value of H which has a finite
range even for v = 1. The ¢y can change by more than a factor of 3 depending on the value of /.
Thus, we must take into account the fraction of particles that are not stochastic at a given wave
amplitude. The ratio of stochastic particles is ~ 60% at ¢ = 0.43, ~ 75% at ¢ = 0.8, ~ 80% at
€e=1.1,~93% at ¢ = 1.3, and ~ 99% at € = 1.5. This is why < Ay > / < Ay > g is below unity
for ¢ S 1.5. Let us denote the integrable particles by the subscript 'int’ and the stochastic particles

by the subscript ’st’. What we should really be plotting in Fig.d4ais < Ay >, / < A7 >qr and

(‘vlul+‘vll)

Nimt

not < Ay > [/ < Ay >qr. But < v >,/ <y >qL~ <7y>/[/< v >qL, where we
have assumed < ¥ >ine / < v >q@r < 1. Using the vzlues of ¥V, cited above for various €’s, it then
follows that < Ay >, / < Ay >qy is indeed very close to unity. In short, the discrepancy between
< Ay > and < Ay >qr in Fig.4a for ¢ < 1.5, is due to the fact that we have included integrable
orbits in < ¥ > but not in < Ay >gr. The fraction of stochastic particles can be easily calcuiated
analytically by incorporating phase effects in the expression for the stochasticity threshold. e
then find that stochastic particles are well described by the diffusion code.

The agreement between D and Dgy is again very good for a large range of wave ampiitudes

as shown in Fig.4b. This is encouraging considering that the theoretical analysis presented in this

paper are at their worst for the parameters in Fig.4 where the phase effects are important and X
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is not just confined to one value. Thus, we conclude that the diffusion formalism is quite robust
and is highly accurate in predicting the time evolution of an ensemble of particles.
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Figure 1.

Figure 2

Figure 3.

Figure 4.

Figure Captions

Diffusion Coefficient. The parameters used are w,/Q? = 0.3, w/f2 = 1.97, a = S0°,
and ¢ = 0.19. The wave is a R-x mode. Only the diffusion coefficient between
v =1 and v = 40 is shown.

Time evolution of various quantities for w/Q? = 1.97, w,/Q = 0.3, a = 80°, and
€ = 0.19. The wave is a R-x mode.

The variation of < Ay > / < Ay >qr and D/Dgy, as functions of wave amplitude.
The waves are R-x modes with w/Q = 1.97, « = 80°, and w,/Q = 0.3. The scale in
the z—axis is linear but the scale from 0.19 to 0.99 being different than that from
0.99 to 10.

The variation of < Ay > / < Ay >qr and D/Dq as functions of wave ampli-
tude. The waves are L-o mode with w/Q = 2.6, a = 80°, and w,/Q = 0.4. The
discrepancy between < Ay > and < Ay >qr for € S 1.5 is due to the presence
of integrable orbits. If we exclude the integrable orbits in calculating < Ay >,
we once again find an excellent agreement with the diffusion code. The fraction of
integrable orbits can be determined apriori analytically. The scale in the z—axis

is linear but the scale from 0.43 tp 1.5 is different than that from 1.5 tp 10.
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A Fast and Accurate Method of Calculating Particle Diffusion:
Application to the Ionosphere

H. Karimabadi

Institute of Geophysics and Planecary Physics,
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C.R. Menyuk (%)

Science Applications International Corporation
1710 Goodridge Drive, McLean, Virginia 22102

Abstract

Electron acceleration by a wave propagating obliquely in a magnetized plasma is considered.
For wave amplitudes above the stochasticity threshold, the motion of electrons is diffusive. A test
of a simple diffusion formalism is presented. We reduce the diffusion equation to a 1-D form by
transforming to a coordinate system that has the Hamiltonian as one of the axes. We present a
model for the diffusion coefficient and solve the resulting diffusion equation by means of the finite
element technique. The results are compared with numerical solutions of the orbits. Finally, we

apply our results to the problem of electron diffusion in the lower ionosphere.

(a) Permanent Address: Department of Electrical Engineering, University of Maryland. Baltimore,
Maryland 21228.




I. Introduction

The problem of charged particle acceleration by waves is of fundamental importance in plasma
physics and plays a central role in the understanding of many processes in space physics. In an
nnmagnetized plasnia. the motion of a charged particle interacting with a plane wave is very simple:
there exists at most one resonance and the system is integrable. The trapping width is proportional
to €!/2 where ¢ is the wave amplitude. The particle motion can then become random only if there
exist several waves with amplitudes and frequencies such that the trapping width of adjacent waves
overlap. In other words, \ie condition for the particles to be stochastic is for the bounce frequency
wy in the potential well of each wave to be larger than the spacing between the adjacent resonances
ws > Aw. The evolution of an ensemble of particles can then be described by the quasilinear
(diffusion) equation [Vedenov, Velikhov, and Sagdeev, 1961; 1962; Zaslavsky, and Chirikov, 1972].
Conversely, when the wave amplitudes become large enough to satisfy the condition wy > N,Aw,
then the stochasticity disappears as the effect of individual resonances would be washed out and
the particle would see a single potential wel! with slowly varying parameters. Here N, is the
number of waves in the wave packet. Thus, the condition for the validity of the quasilinear theory
is NyAw > wy > Aw.

The presence of a static magnetic field changes the particle motion in two importunt ways:
(1) particles can resonate with the harmonics of the gyrational motion, (2) resonances can occur
even if the wave has a phase velocity larger than the speed of light. The resonance condition in a
magnetized plasma is w — kjvy = {Q/v, where £ = 0,+1,£2,..., and Q = [q|B,/mc. The trapping
width associated with each resonance is proportional to €!/2. As long as € < 1. the neighboring
resonances are well separated and the particle motion is periodic. At a critical value of the wave
amplitude referred to as the stochasticity threshold [e.g., Lichtenberg and Lieberman, 1983], the
adjacent resonances overlap and the motion becomes random or chaotic. The particle can then
sample several resonances and gain large energies in the process. In this case, the motion of the
particle can still be described by the quasilinear theory even though there is only one wave present.

The general problem of single particle motiorn. under the influence of an obliquely propagating
plane wave has been treated in a series of papers by Karimabadi and collaborators [Menyuk. et

al., 1987; 1988; Akimoto and Karimabadi, 1989; Karimabadi, et al., 1990]. The main result of
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these single particle studies has been the realization that for waves with .V < 1. the Hamiltonian
surfaces become topclogico v open, thus allowing large particle acceleration. Here. V. is the
refractive index parallel to the magnetic field. In this paper, we derive a diffusion equation that
describes the evolution of particle distribution function for wave amplitudes above the stochasticity
threshold and Ny < 1. The generalization of our work to the case of Ny > 1 is trivial. We reduce
the diffusion equation to 1-D by transforming to a coordinate system with the Hamiltonian as one
of the axes. We then present a model for the diffusion coefficient and solve the diffusion equation
using the finite element technique. This algorithm is found to be very fast and accurate. The
solutions of the diffusion e.uation are compared with exact numerical solutions of the orbits. The
conditions under which the diffusion formalism breaks down are discussed.

The techniques and algorithm expounded in this paper are quite general and are likely to find
applications in many problems in space physics and astrophysics. We have already applied the above
techniques successfully to the problem of par.icle acceleration in cometary shocks [narimabadi, et
al., 1989] and in supernova remnants [Karimabadi, 1988]. In section [VI], we briefly apply our results
to the problem of remote acceleration of ionospheric electrons from ground based radio transmitters.
Accelerated electrons could be used to create an artificial aurora, to probe the magnetosphere, and
to measure the cross section of ionospheric constituents interacting with energetic electrons. e
find the power needed for stochastic electron acceleration to be beyond the present day capabilities.

We propose ways to overcome this problem. We present our conclusion in section [VII].

II. Test Particle Results

in this section we describe the formulation of the resonance overlap criterion which we use to
determine the acceleration threshold. More details can be found in Karimabadi. et al. {1990].

In general, we assume that each electron is movingin a homogeneous magnetic field and a plane

wave propagating obliquely to the magnetic field. This plane wave can have both electromagnetic

and electrostatic components. We thus write the particle Hamiltonian as -
2 1/2
H= {(cP—qA) +m2c4} + ¢ = m03~/+q¢'. {la} .
where
- ky g ke . .- ]
A =4 7 Sinves + Ay cos e, — Ay —sinwé, + 8,6, = A + 2B.é, (1b)
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¢ = d,sin v, (lc)
and

P=kiT+ k2 - wt. (1d)

Although we are primarily interested in electron acceleration, we keep the charge ¢ arbitragy in the
derivation of the equations. We next use a series of canonical transformations and the techniques

of Hamiltonian perturbation theory to reduce the Hamiltonian to the form

H~Hy+ H,. (2)
The zero-order Hamiltonian is given by
w
Hy = mctyo — —py, ‘3a)
ky
where
p
Yo = (1 + gt m2c2) : (3b)

The quantities p; and py represent the momentum perpendicular and parallel ‘o the magnetic
field. The surfaces of constant H, are elliptic in py — py space if Ny > 1, hyperbolic if ¥y < 1 and
parabolicif ¥ = 1. Equation (2) is derived by expanding in powers of the wave field; it is consistent
with this expansion to take p, and pj to be purely mechanical. The first-order Hamiltonian is given
by
(o o]
H, = Z Zysin (k'”Z + 50) s (4)

=~

where # is the gyroangle and

2 P Q
Ly = me {51 [_‘_I_ L sina - —q——fcosa]

7o lql me lal ke
P, )
Jilkip)+ ea==Ji(kip) + —voeaJe(kip) | (5a)
me lql
o < lids _ 55)
me maow




lq] Az 19 Ea -
€ = 7 = . {ac)
me mew

_l9l®, _ lqi£s 5d)

me? meNw'

Here, the quantity o is the angle of wave propagation with respect to the magnetic field, g is the
electric charge, and  is the magnitude of the nonrelativistic gyrofrequency. The explicit time
dependence in the original Hamiltonian of Eq. (la) has been absorbed into the z—-coordinate of
Eq. (4).

Resonances occur when kyz + €9 =0, or

a result which can also be obtained from standard, linear theory. It can be easily verified that the
resonance surfaces are elliptic (hyperbolic) when the H —surface is hyperbolic (elliptic). Typically,
for a given value of £ and H, there will be only one pair (p,py) which satisfies Eq. (6). It is this
case which we are interested in treating. In some cases, it is possible for Eq. (6) to be satisfied for
every point (p.,py) on the Hamiltonian surface in phase space. In these cases, special methods of
treatment are required [Karimabadi et al., 199u|. We will not discuss this issue in this paper.

If the wave amplitude is small, then an electron will be affected by at most one resonance. In
this case, all but that single resonance’s contribution to the Hamiltonian can be ignored, and the

Hamiltonian becomes

H = H(py, 1)+ Zesin(kyz), (

where z has been redefined to absorb £6. In this re-defined coordinate system. the resonance occurs

at a point (py_,pr,) where 2 = 0. Writing

10°H, (2
Ho(pypr) = Holpyrpir) + 5—0-}70—) (py — py-) - (%)

-

9 H ' ]
Y T A, B I . 9\
apj |, (1 Nxf) / e -

gl

letting




and absorbing the constant H,(py,, pyi,) into H, the Hamiltonian becomes

1 )
= —— —_ c L 1 onz )
H 2M(Pn pir)” + Zpsin(kyz), (10)

which is the pendulum Hamiltonian. The trapping half-width and the bounce frequency are then

given by
Apy = 2iM Z,|M*. (11)
and
7,1/
w =kl 37| (12)

respectively. The trapping width in v can be easily found from Apy:
. (13)

The trapping half-width given by (11) is independent of the initial phase. This is due to our
approximation of the Hamiltonian near a resonance by the pendulum Hamiltonian. The phase
dependence of the trapping half-width is mainly due to the py component of momentum and the
electrostatic component of the wave. If ¢ # 0, the phase dependence of the trapping half-width
becomes increasingly important as @ — 90°. The above analysis can be easily generalized to include
the effect of phase on the trapping width [Ginet and Heinemann, 1990]. One then ends up with
an equation for the trapping half-width that can in general only be solved numerically. This is not
very useful to us and we use (11) in this paper.

It is important to note that the term “trapped” has a very specific meaning: it refers to orbits
close enough to resonance condition so that the sum over all the harmonics can be replaced by a
single term in the sum. The particles not very close to the resonance can still be accelerated. but
the acceleration is much less effective.

In deriving (11) and (12), we have explicitly assumed that a # 90°. For a = 90°, most of
the steps that led to (11) remain the same. The only difference comes in eliminating the time
dependence in the Hamiltonian: the transformation £, = p’”[z - wt/k”] is replaced by F» =
p'((-<t/k). It is then easv to show that the trapping width is still given by (13). The only
difference is that for a = 90°, py is a constant of motion and is determined a prior: from the initial

conditions. The sensitivity of the trapping width to p; and thus to the initial phase at o ~ 90° is
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not surprising since the term €(sin v)/N; in H becomes very large as @ — 90°. The Hamiltonian
of a particle initially at rest can then have a large range of values depending on the initial phase.
For o ~ 90°, py is still given by the solution of (3a) and (6) but with H, replaced by H and p:
replaced by the canonical momentum. If ¢, = 0, the trapping width becomes less sensitive to the
initial phase.

The separation on an H —-surface between two adjacent primary resonances is

mCZQku
Spy = w? — kﬁcz.

The stochasticity threshold condition based on the overlap criterion {Chirikov. 1979] then reads

(14)

AP" o S
-8?"' =4 wp/(2/7,) R 1. (15)

As long as the resonances do not overlap, an electron in the neighborhood of the resonance ¢ can
change in p; by at most 2Ap;. Once resonances overlap, the electron can jump from resonance
to resonance and in this way gain large amounts of energy. We can determine in this way the

threshold wave intensity to accelerate electrons originally at rest to 10 Mev or more.

III. The Diffusion Equation
There are two equivalent ways of deriving the diffusion equation. The first, where the ef-
fects of particie moiion on the imposed fields are neglected, lezds te the Fokker-Planck equation

{Chandrasekhar, 1943; Romanov and Filippov. 1861; Sturrock, 1966]

af 8 A 192 (AT

3t = 57 U 55
d 10° _
= —— (Bf) + —=—=(Df), 16
57 (Bt 5520f) (162
where

B = lim @—, 116b)

at—oc At

(A7

D= lim (20 o HBe

At—o ot
and where the brackets indicate an average over initial conditions. In the derivation of (16a), it is

assumed that: (1) The change in velocity Av in 2 ti..z interval At is such that (Av) and (Ae”)
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contain contributions linear in At: whereas, all higher products have expectation values that vary
as a higher power of At and are therefore neglected. (2) The trajectory which a particle follows
depends only on the instantaneous values of its physical parameters and is entirely independent of
its whole previous history (Markovian assumption).

The second derivation of the diffusion equation is based on the quasilinear theory [Vedenov,
Velikhov, and Sagdeev, 1961, 1962; Drummond, and Pines, 1962]. They conclude that:

o _ 2 01
3t~ dv D(?v)' (17)

The diffusion equations (16a) and (17) are equivalent since the friction and diffusion coefficients in

the Fokker-Planck equations are related by

1dD

e ad (18)
2 dv Y

The Hamiltonian (1a)is a function of pj and p; and it is thus convenient to start with the relativistic

diffusion equation in cylindrical coordinates

of 1 0 9 9
Bt prdpy [P.L(D.Lu%l'l' + D.LJ.‘a;I)f]
] [é] a
+ o [(Duu;),#" + D"*ap_l)fJ , (19)
where
Dy = /0 dr (py(t)py(t + 7)), (20a)
D= [ dru(opu(t+ ), (20b)

In (20), the angular brackets indicate an average over the initial coordinates:

21|’/k” dz P24 d&
= K 2 b 0. 21
(4) Al,/o %/O 15 (21)

Equation (19) is averaged over the cvlindrical angle ¢ which becomes randomized on timescales

much faster than the relaxation times of distributions in p and p,.
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Integrating over the unperturbed orbits we obtain

kypy €9 =
i Z A 25( my Y ) = Z D””:‘ !,.33&)

{=—00 {=—~0o0

Dy =

rvl 2

o0
S Diy,. (22b)

, - 2 k l
D =1(me) Y Lz, 6( ﬂ——g)

2 Py 21 my 7 .
T 2! kjpy  £Q =
D,j=Dy = <-kymQd —Zzé(w——ﬂ-—-—— = Dy, 22¢
1 =Dy =gk :4_:00 P s l;x Ll (22¢)

where §(z) is the usual Dirac § —function. These diffusion coefficients are not useful as they stand
because in their derivation we did not take into account the decorrelation due to stochasticity. In
order to overcome this problem, we use a -nodified form of resonance broadening theory [Dupree,

1966] as given below.

A. Diffusion Model

The é—function in the diffusion coefficients came about when we substituted unperturbed
orbits in the -ight hand side of (20), which then implies incorrectly that if the particic is in resonance
with the wave, it will maintain resonance indefinitely. We showed in previous sections that the
resonance width is indeed finite and is given by (11). The finiteness of the trapping width is due to
the fact that kyvy # €Q%/~%, and, thus, the particle is shifted from exact resonance by the wave.

It can be easily shown that the decorrelation time or the shift in the resonance condition due
to the finite trapping width is roughly 2w, in the {—th resonance. Thus, we replace the § —function

by a function f(z), where

— 1/4“"69 if II' < 2wy
fz) = {o, ] > 2ws

The quantity w, corresponds to the bounce frequency (12) in the fth resonance. Note that

/—+oo f(z)dz = /+°° §(z)dz = 1.

o v =30

This spread is equivalent through the order to which we are working to the spread in py calculated

n(11).

B. Reduction to 1-D
Because H is a conserved quantity, the diffusion proceeds along a constant H —surface. It

is then useful to replace the (py,py.) coordinate system with the (f,v) coordinate system. which
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reduces the diffision equation to one dimension. The details are given in the appendix and the

diffusion equation reduces to

of 10 of |
3 =13 (P, (232)
where
_r_ w 1/2
P S ) )

The sum is over regions of stochasticity. In other words, we first calculate a diffusion coefficient
for each harmonic, and, then, in regions where resonances overlap, we sum the contribution due to
each resonance. We stress that the problem is still two-dimensional. We have reduced the problem
to one dimension along each H —surface, but we still have to consider solutions for many H —values
if the initial distribution function spans more than one value of H.

The way in which we have defined D.,. implies that its derivative is zerc cverywhere except
on a countable set of points where it becomes infinite. Hence, the numerical evaluation of (23)
requires great care. We deal with this difficulty by using a finite element discretization method in
which case the problem should be characterized by a variational formulation. Below, we use the
Ritz-Galerkin method [Muschietti, Appert and Vaclarik, 1982; Dhatti and Touzot, 1984] to give

the diffusion equation an equivalent variational formulation.

C. Discretization of the Diffusion Code
We start by multiplying (23a) by v and a wighting function ¢g(-y) and then integrate over the

energy domain I' = (ymin, Ymax) to obtain

/79(7) —=dy = (7Dwg( )ZQ

Particle conservation implies that the first term on the right hand side of (24) is zero. Dividing the

Tmax ag af
‘/i:7D7767‘87 7- (24)

Ymin

range {Tmin, Ymax ) i0to V equal sized elements, the distribution function may be written

N
f=" L) (25)
=1

where the w;(v) are the basis functions for the finite elements, defined so that

w :{( = %=1/ (vi = vie)y i1 €
' (is1 = V) (i1 — vl v <y
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and is zero elsewhere, where (v,_;,7;) is the 1—th element. We now use the v, as the weightinz

elements in (25) and defining the elements of the matrices A and B

Aij:/wiwj'Yd'Yv (262)
r
Y; oY;
o[BS, o)
’ p oy Oy

where 7 and 7 range from 1 — NV, we obtain the equation

of _
A..a_t_g.f_ {27)

Time is discretized using a leapfrog scheme, and (27) is easily solved as both A and B are tridiagonal.
Note that the matrices A and B are time independent as the fields are constant in time and thus
these matrices need to be evaluated just once. The boundary conditions are that D.,, = 0 at the
lower boundary and f = 0 at the upper boundary. We choose ymax to be sufficiently large that no
diffusion to this boundary occurs over the time scale of the simulation.

The diffusion coefficient D.,, as given by (23b) is evaluated numerically as a function of ~ as
follows: First, we determine all the resonances that intersect the A/ —surface in the interval {from
Ymin tO Ymax 2nd calculate the trapping width for each resonance. We model the contribution of
each resonance to the diffusion coefficient as a box having a width equal to the trapping width and
a height given by the quantity inside the summation sign in (23b). So, there is a box centered
around each resonance with known height and width. Next, we add the heights in regions where
resonances overlap, otherwise leaving the boxes intact. The resulting diffusion coefficient is not
smooth (Fig. 1) and is not differentiable. However, as evident from (24) and (26b), what is nceded
is the integral of D.,, over each finite element which is well defined and easily obtained.

The stability condition for our code is At < h?/D.,., where h is the grid spacing. In other
words, the time step used in solving the diffusion equation should be smaller than the time it takes
the particle to diffuse across the grid.

We have tested the code by running it for cases where the diffusion ~7uation has anaiviic
solutions and found the agreement between numerical and analvtical results to be excellent. e
have also found the number of particles to be typically constant to better than one part in 107,
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Before we compare the solutions of the diffusion code with exact orbit calculations, it 1s 1n-
portant to check the accuracy of our analytical expressions for the trapping width and stochasticity

threshold. This is done below.

IV. Threshold Calculation

Here we are interested in determining the conditions under which the electrons in the ionosphere
can be accelerated to large energies from rest. The analytical threshold is based on the overlap
condition, and there is no guarantee that at the overlap amplitude the resonances extend down to
v = 1. Thus, the quantity we are interested in is not the amplitude at which the first two resonances
overlap but the amplitude at which the first three resonances overlap with the stochastic region in
phase space reaching down to 4 = 1. We require the overlap of the first three resonances because
the waves we are considering have N ~ 1 and for such waves the trapping width is an increasing
function of the harmonic number up to some critical £ beyond which the trapping width drops off
exponentially. We have found empirically that if the first three resonances overlap, the remaining
resonances will overlap as well. Thus, the overlap of the first three resonances with the additional
constraint that trapping width(s) reach down to ¥ = 1 ensures global stochasticity in the phase
space region of interest.

The experimental value of wave amplitudes for which zero energy particles can be stochastically
accelerated are determined by solving the orbits of 256 particles, all with initial ¥ = 1 and initial
phases uniformly distributed between 0 and 27. The orbits are typically solved up to 2t = 1000
and the maximum energy vmax reached for each particle during this time interval is plotted as a
function of the initial phase, as shown in Fig. 2. This method yields a quantitative measure of
the fraction of particles that are stochastic. In other contexts. the surface of section technique is
useful in determining the level of chaos in phase space; however, since each phase corresponds to a
different value of /, many surface of section plots are needed to determine the phase dependence
and, thus, this is not practical for us.

The comparison of the analvtical and numerical conditions are given below for various plasma
parameters and wave modes.
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(1) R-x mode, w,/Q =03

First, we consider the R-x mode in a plasma with w,/Q = 0.3, @ = 80° and a range of wave
frequencies from w/2 = 1.09 to 7. A typical route to global chaos in this parameter regime is
illustrated in Fig. 2. For ¢ = 0.14 which is below the stochasticity threshold, the particle orbits
are integrable and the gain in energy is limited. The yyax oscillates as a function of the initial
phase (Fig. 2a) with different phases corresponding to different values of H. The dependence of
the max On the initial phase means that the stochasticity threshold is also dependent on the phase.
As the wave amplitude is increased to € = 0.155, a very small fraction of particles are stochastically
accelerated (Fig. 2b). At ¢ = 0.27, more than 90% of the particles are stochastic (Fig. 2d). The
remaining 10% of the particles are locally stochastic (weakly chaotic) but are limited by KAM
surfaces to low energies. There are, however, a small fraction of particles ~ 5% near ¥ = 7/2 that
remain integrable even after the wave amplitude has been increased to € = 0.5. The v, is in fact
smallest at 1 = 7/2 as evident in Fig. 2a.

It is important to note that particles can gain energy without being trapped. The energy gain
of a particle starting with zero energy is determined by how far the particle is from a resonance
and how strong that resonance is. The different initial phases correspond to different H values, and
the distance of the particle from the resonance as well as the strength of that resonance, changes
as a function of H. For the R-x mode and the parameters of this section, the spread in H due
to different phases is small. The phase effects are much more important for L-o mode as we show
shortly. For particles near » = /2 the particles are far from rescnance and the KAM surfaces
separating the particles from resonance persist to high wave amplitudes.

As the simulated value for the stochasticity threshold at a given frequency, we choose two
amplitudes €19 and €999 which correspond to amplitudes for which 1% and 90% of the particles
first become stochastic, respectively. We use €gqy rather than €99y because as shown in Fig. 2.
there can be a large gap between €gg and €1p0%, While the gap between €9 and €g9% is much
smaller. In other words, only 90% of the particles are easily accelerated in the parameter regime
above.

At all frequencies in Fig. 3. except w/Q = 1.09, the particles reach energies above v > 3 in

Qt = 1000 after they become stochastic. We may thus determine what fraction of the particles
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are stochastic. Another check is to solve the orbits up to ¢ = 3000 and check whether they
were accelerated beyond vhax at 2t = 1000. These two tests yielded similar results in all cases.
For /0 = 1.09, the index of refraction is small and even the stochastic particles could not be
accelerated easily above -; = 3. At this frequency, we determined that v > 2 is a good condition
for stochasticity.

The comparison of the analytical and simulated values of stochasticity threshold is shown in
Figs. 3a and 3b. The theoretical threshold is indicated by the solid curve. The stochasticity
threshold €n. is seen to increase with frequency. The value of €, does not vary much, whereas
the value of €gq% increases rapidly as a function of frequency. The analytical threshold is in better
agreement with €;9 than egpy for most of the frequency range below w/Q2 ~ 5 with the situation
reversing at higher frequencies. The overlap condition for stochasticity is a crude and simple way
of estimating the condition for stochasticity and it is not surprising that the simulated threshold
values deviate from the analytical results. The fact that the wave amplitudes are rather large
(ewnrs & 0.1) also contrit utes to the error. An additional factor of r in the stochasticity threshold
which is often invoked to take into account the effects of higher order resonances (Chirikov, 1979)
does not seem appropriate for our case, and it would in fact make the differences between the
analytical and simulated values more drastic.

At low frequencies, the gap between €;o and eggy is small and thus the transition to global
chaos is more abrupt as is evident from Fig. 3c. The gap widens at higher frequencies and for
/2 2 4 it becomes difficult to accelerate more than 80% of the particles.

Next, we consider the variation of €.y, as a function of propagation angle a for the same
parameters as in Fig.3 and w/Q? = 2. Both the analytical and simulated € are seen in Fig. 1 to
first drop rapidly and then flatten oui as a function of a. The rapid drop of €inrs is not surprising
since the system is integrable at a = 0°. The analytical threshold in this case overestimates the
threshold condition by roughly a factor of 2. The analytical estimate for the overlap of the first
three resonances but not extending to ¥ = 1 are slightly below ¢,5. Had we replaced the factor of 4
in (15) by a factor of 27, the agreement between the analytical and simulated values of €y would
have much better for the parameters of Fig. 4. Even though there exist theoretical arguments for

the presence of this factor, it does not work for all frequencies.




(ii)) R-x mode, w,/Q =2

Next. we consider the plasma parameters corresponding to the dayside jonosphere =,/Q = 2.
and a = 80°. For this parameter regime only 30% of particles are easily accelerated and there
exists a rather large gap between €39y and €ggy,. As a result, we have plotted exgy rather than €igg
in Fig. 5a. The value of y,,x is very small near v = /2 and 3% /2 and particles with initial phases
close to these values remain integrable even for very large wave amplitudes. The analytical threshold
lies mostly between €;5 and €ggy. The threshold amplitudes tend to be higher than those in case
(7). This is mainly due to the smaller indices of refraction. The number of overlapping resonances
and the trapping width are strong functions of N. For N < 1, the trapping width increases as a
function of harmonic number up to some critical value £..;, beyond which it drops ofi exponentially.
The smaller IV, the smaller £.,;; and thus the fewer the number of overlapping resonances. Since the
index of refraction at a given frequency is smaller for w,/Q = 2 compared to that for w,/Q = 0.3,
fewer resonances overlap and the diffusion is weaker for w/2 = 2. Thus, it is easier to accelerate

electrons in the nightside ionosphere.

(iii) L-o mode, w,/0? = 0.3

Figure 6 illustrates the transition to chaos for w/Q = 2.6 and & = 80°. As mentioned earlier,
the phase dependence of the 44,4 is more important for the L-o mode than it is for the R-x mode.
This is particularly true at large angles where the term €(sin)/Ny in the Hamiltonian becomes
significant. In Fig. 6a all the orbits are integrable and the minimum acceleration is seen to occur
at ¢ = 0, v and 27. As the wave amplitude is changed from 0.35 to 0.5, only ~ 60% of the particles
become stochastic. The particles between ¥ ~ 0 to 7 remain mostly integrable. It is not until ¢
has been raised to ~ 1 that ~ 50% of the particles between 1 ~ 0 — 7 become stochastic. The
phases between ~ 0 to 7 correspond to positive H values. Recalling that py o« (£Q/w — H' and
A7 o py1/2, it is easily seen that the trapping width is larger and the €,y smaller for negative H
values.

The behavior shown in Fig. 6 is typical of what happens at other frequencies in this parameter
regime. Thus, we use €;5, and €50 as the experimental estimates for €,n,s. The comparison of
the analytical and experimental values of €,),s are shown in Fig. 7a. The analytical value of ¢,

changes dramatically as a function of frequency whereas the experimental values vary slowly with
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frequency. The analvtical value of €, is seen to be highly inaccurate for w/Q £ 2 and /022 5

due to the importance of the phase effects for the L-o mode. If we replace /[, by H and p, by the
canonical momentum in (13). we find much better agreement with the experimental values as we
will show shortly.

The ratio of €gpg to €19 fluctuates between ~ 1.15 to 2.15 as evident from Fig. 7b. This ratio
gets smaller at higher frequencies ir. contrast to case (¢). The €,1,s values are tvpically larger than
those for the R-x mode in Fig. 3 in agreement with the previous predictions [Karimabadi et al.,
1990].

Finally, the variation of €.,y with the propagation angle a is shown in Fig. 8. The variation
of €nrs with angle has the general form of that for the R-x mode. The theoretical estimates ar:
in reasonable agreement with experimental results for a between 10° and 80°. For a 2 80°. the
theoretical threshold (15) appears tc be inaccurate. As we mentioned e=-lier, this is due to the fact
that at large angles the phace dependent term in A due to L-o mode becomes very large. There is
a simple way of modifyving (15) to account for the phase dependence: replace H, by H and py by
the canonical momentum. Thus, depending on the initial phase, we would have a different valne of
H which we then use in (15). The accuracy of this procedure is tested in Fig. 9. We find a good
agreement with the experimental result. The agreement is surprisingly goed considering the crude
wayv that we have incorporated the phase effects into the expression for the triopping width.

The acceleration of particles starting at rest generaiiy requires larger ' ave amplitudes than
those starting with a finite energy. The Bessel functions in the trapping width go to zero if evaluated
at v = 1. and there are usually persistent KAM surtaces that separate such particles from the nearby
resonance. The analytical results are however in reasonably good agreement with the experimental

results in spite of the complexity of the dynamics at low energies.

V. Test of the Quasilinear Theory

In order to test the quasilinear theory, we have solved the diffusion equation for many differcnt
parameters and compared the results with eaact orbit calculations. We take the initial particle
distribution function to be a delta function centered at 4 = 1. In the exact orbit calculations. we
follow the orbits of 256 particles, all with initial v = 1 and phases distributed uniformiy between

§ and 27. up to ¢ = 3000. This corresponds rounghly to the refevant length scale for ionospheric
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heating {Menyuk. et al.. 1988]. The resulting distribution function is very bumpy due to the sl
number of particles used. To obtain smooth distributions. many more particles would have to
be used—an approach which is both both impractical and unnccessary. Instead. we compare the
moments of the two distribution functions. The sraall number of particles which we use is sufficient
in this case to vield an accurate result. In the following, we use the quantities \y — 7,) = (A7) and
{(v - 70}2) = ((A‘/)z) to make the comparison, where v, is the initial v of the particles and the
brackets indicate an average over ihe initial conditions:

I =90)% f (v t)dy

= (0 %)

((y - 70)2> =
Note that D., x ((A*,)g). The test of the quasilinear theory is presented below.

(1) R-x mode, w/Q = 1.97

First, we consider the diffusion due to a R-x mode with w/Q = 1.97. a = 80° and «,/Q = 0.3.
The valuew,/Q = 0.3 corresponds roughly to the nighttime jonosphere at 130 km [Gurevich, 1978].
The theoretical and numerical €),,, are 0.19 and 0.143 respectively.

We carry out our comparison for wave amplitudes ranging from 0.19 to 10. The variation of
several quantities as functions of time are shown in Fig. 10 for ¢ = (.19. The quantity ((Aﬂ:)
is seen to follow a linear increase in time in accord with the underlying assumptions built into
the Fokker-Planck equation. The particles have not had enough time to sample all the availabie
resonances and as a result the quantity ((A7)2) increases with time. Once the particles reach the
energies beyond which D, becomes very small, the {((A7)?) flattens out as a function of time and
diffusion stops. For the parameters of Fig. 10, the flattening ot does not happen until {2t > 3000.

The quantity D/Dgr which is the ratio of the exact orbit calculation of ((A))z\ to that
obtained from the diffusion code, deviates significantly from unity at early times (Fig. 10c" but
settles down close to its asymptotic value for Q¢ 2 750. This is expected since from Fgs. 16b and
16c. it follows th~. the diffusion formalism is strictly valid for times long cempared with correlation
time scales. Similar results are also seen at higher amplitudes 1s is apparent in Figs. 11 and {2

The deviation of particle .notion from the predicted quasiinear diffusion at eariy tinies can
ocrur due to at least two effeces: First, there can exist smail but finite “slands of stability wirhin

an otherwise stochastic phase space. A piiticle ~ ning close to such an ixiand can got tempora~’,

cO
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irapped. Such stickiness in phase space can obviously have an effect on the diffusion of the particies.
As we mentioned earlier, the trapping width increases as a function of harmonic number and in
the transition to global chaos. the border of chaos lies at the lowest energies. Since we start the
particles at v+ = 1. and the stickiness is most important at the border of chaos which is also at
~ ~ 1. the particles often experience some Initial stickiness; however, once the particles reach the
higher energies, theyv diffuse freelv. Thus. there exists a finite time before all the particles can diffuse
{reelv. The second source of deviatior from the predicted quasilinear behavior is that the particles
may initiaiiv sample a few resonances in which case the motion is closer to a coherent acceleration
than diffusion. The first effect results in a retardation in the diffusion and the secand effect leads
to diffusion larger than Dgs. The balance between these two effects determines D/Dg; at carly

times. For 2t & 750. the above two effects become much less important.
The Fig. 10d-e. show the evolution of (z) and (:)7 >, 0 time, where (z) is the average

is the average z—distance

distance in the z—direction iravelled by the particles whereas (z)1 > 10

travelled by orly those particies that attained ymax & 10 during the length of the run. As the wave
amplitude is increased, more of the particles can reach ~vmay = 10 and the evolution of (z) and
(z)‘7 > 10 become more similar as shown in Figs. 17 and 12. For parameters of this section, nearly
all of the particles are accelerated in the positive z—direction. We can estimate the variation of :

with time from (2)}: v — yv./{cNy) ~ 1 or

veo= iy = 1)Vye/~. 129)

We have used F, -~ 1 As ~ inereases.
v.—- N e {30}
Note that the vilue of v, i, fixed independent of the wave amplitude. The Line of v, = Nic s

aso piotted in Figo i0d o0 The sunple estimate (300 ropresents an upper bound on {23 in this

cases Pagnateoan Ut e e e meaadney aocnral o0 Aigher wave amplitudes wivre particies ae
seveterated Tasver and to Lorer oo e L evideut Tron Pigss 1D and 120 The particles with v 2 10
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The fraction of particles having ~ 2 10 is plotted in Fig. 10e. The theoretical curve foilows
the experimental curve very closely especially at later times. The same is also true at other wave
amplitudes as shown in Figs. 11 and 12.

Next we plot values of (Ay)/(Av) gy and D/ Dy, at Qt = 3000 for a range of wave ampiitudes
from ¢ = 0.19 to 10. Here, (Av) and (A7) oy are the average (over the initial condition of A~
as obtained from numerical solutions of orbits and the diffusion code. respectively. The results
are shown in Fig. 13. The quasilinear theory appears to be quite adequate in describing the
particle motion over this rather large range in wave amplitude. For ¢ > 10, the particle motion
approaches the integrable regime of unmagnetized plasma in which case the diffusion equation
would no longer be valid. The deviation of D/Dg from unity as a funciion of wave amplitude
has a sporadic behavior and does not seem to follow a nice oscillating pattern. In short, we have
found no evidence for oscillations of D/D gy as a function of wave amplitude, in contrast to what
was found by Rechester and White (1980] in their studies of the standard mapping. Furthermore.
the fluctuation amplitude of D/Dg is much smaller than that seen in their work. The presence of
resonances of different sizes clearly leads to averaging beyond that which is found in the standard
map and thus to a closer correspondence to quasilinear theory. These results suggest that the

standard map is not an ideal paradigm for real, physical systems.

(ii) L-o mode, &/ = 2.6

Next, we consider the diffusion due to the L-o mode with w/Q = 2.6, a = 80° and wp/{ = 11.3.
The theoretical threshold is 0.42 and the numerical threstolds €19 and €y are 0.4 and 0.75,
tespectively.

The evolution of the various quantities as functions of time are shown in Figs. 14 through G
The quantity ((A*/)Z) follows a more or less linear increase in time as before.

The diffusicn is larger than gy at early times as shown in Fig. 14c even though for ¢ = 1) 327
less than 50% of the particles are stochastic. Similar behavior is also seen at higher wave amplitudes
(Figs. 15c, 16c). This is mainly due to the fact that at early times some particies are coherently
accelerated by a few resonances. As before. for 0t 2 730. the /D5 settles down close 1o 1ts
final value. For € = 0.427, the asvmptotic value of D/D g ic below unity (Fig. ttcr This e due

to the fact that at this wave amplitude less than 60% of the particies are stochastic. As the wave

80




ampiitude is increased. more of the particles become stochastic and eventually D/ Dy becomes
larger than unity as shown in Figs. 15 and 16¢.

The evolution of () and (z)_ - 1o {0 time are shown in Fig. 14d for € = 0.427. A good

~

majority of the particles are now travelling in the negative z~direction and the analvtical estimate

(30) agrees reasonably weil with (z) -,

v &1

less than 60% of the particles are stochastic and (30) is strictly valid for high energy particles.

i

, but not with (7). This is expected since for € = 0.427

Furthermore, as we have already shown. for the L.o mode the phase effects become important and
A P

in estimating v,, it is the full Hamiltonian /{ and not /, that has to be used:

/ 2 q Q K . ; ‘\/” [
v, ={v - H/mc + = -—sinasinh)—. (31)
gl vy 7

Now. v, can be either negative or positive depending on w and H. Notice that (:)7 > 10 is actually
larger in Fig. l4e than it is in Figs. 13e and 16e. This is a result of the high energy particles
moving in the positive z-direction when ¢ = 0.427: whereas. when € = 3.9 and 10, the high energy
particles move large distances in both the positive and negative z—directions, and. thus, averaging
yields smaller values z-vaiues. When ¢ = 0.427, the particles having v 2 10 cover a range in = from
0 to 27 km in Qt = 3000; whereas, for ¢ = 3.9 and 10, the range in z is =25 to 40 km and -0 to
43 km. respectively.

The fraction of particles with v+ 2 10 as obtained from the diffusion code and exact orbit

"

calculations are shown in Figs. ide, 17e and 16e. The agreemcnt between the two methods seems
very good for {1t 2 1000.

Finally, we examine the behavior of {Av)/{Av) o1 and D/ Doy as functious of wave amplitude.
This is shown in Fiz. 17 where we have piotted {N9)//Ay) op, and D/ Dy, at 2t = 3000 for a range
of wave amplitudes. The quantity (A7)/(A7) gr is well below unity for € = 0.43 and it does not
reach unity until the wave amplitude has been increased to € ~ 1.5. For e 2 1.5, the (Av)/(A7) o1
has small fluctuations about unitv. The (A+)gy was obtained by using f = 1. However. as we
-howed earlier. the phase effects are jinportant for the L-o mode and the €., depends strongiv on
the value of J{ which has a finite range 2ven for 4 = 1. The € can change by more than o factor

of 3 depending on the value of [ {sre e, Fiz. 91 Thus. we ousi take inte acccunt the fraction

of particles that are not stochastic at « given wave amplitude. The ratio of stochastic particles is

~ 60T at e =0 0 O at e = 0%, A0 R0% at e = 11~ 83% at € = 1.3 and ~ 99% at ¢ = 15,




This is why (A7)/(Av) gL is below uaity for € < 1.5. Let us denote the integrable particles by tie
subscript ‘int’ and the stochastic particles by the subscript ‘st’. What we should really be plotting in
Fiz. 1Tais (A7) /(A7) gL and not (A7) /(A7) or- But (Y)se/ (V) QL ~ (YN Nine + N}/ Nine{ 0L
where we have assumed (7);ne/{7)or < 1. Using the values of N, cited above for various ¢z, it
then follows that (A+v),./{Av)oL is indeed very close to unity. In short, the discrepancy between
(A7) and {(Av)gr in Fig. 17a for € < 1.5, results from the inclusion of integrable orbits in (7) but
not in (Av)gr. The fraction of stochastic particles can be calculated analytically by incorporating
phase effects in (15) as we did in Fig. 9. We then find that stochastic particles are well described
by the diffusion code.

Similarly, the agreement between D and D¢y is very good. This result is encouraging, consid-
ering that the theoretical analysis presented in this paper are at their worst for the parameters of
this section where the phase effects are important and H is not just confined to one value. Thus,
we conclude that the diffusion formalism is quite robust and is highly accurate in predicting the

time evolution of an ensemble of particles.

V1. Application to the Ionosphere

In this section, we assess the plausibility of accelerating the elertrons in the ionosphere using
ground based transmitters.

There are three requirements for the effective acceleration of particles: (1) the wave ampiitude
must be larger than €,; (2) particles must remain in the system (ionosphere) long enough to
diffuse to high energies; and (3) the acceleration mechanism should be insensitive to details of the
initial particle distribution.

If condition (1) can be met, then conditioa (3) is also satisfied since the stochastic particle
acceleration, in contrast to any cohierent mechanism. is quite robust. First. we considur ihe power
needed in order to achieve € 2 ¢y In the tonosphere. As we showed earlier. the lowe:® ¢,y 0ccrs
for the R-x mode in the nighttime ionosphere (w,/Q = 0.3) in the frequency range w /€ ~ 1.0 - 2.
The threshold can be as low as 0.08 at & ~ 50° and ¢ ~ 0.1 at a ~ 30°. At such low wave
% of particles can be accelerated. Fortunately, the transition

ampiitudes, only a small fraction £ o

to global chaos is abrupt in this parameter regime and once ¢ is raised tc ~ 0.14, more than 90%

£2




of the particles become stochastic. Thus. the minimum wave amplitude for stochastic particle
acceleration by waves with Ny < 1is between ¢ ~ 0.0% — 0.1,

The stochasticity threshold is in general much lower (¢ ~ 107* —107?) for waves having Ny > 1,
but the Hamiltonian surfaces are closed in such cases. only a few resonances are available, and the
acceleration is much smaller than in cases where Ny < 1.

The power flux is related to the wave amplitude bv [Menyuk, et al, 1988]:

P~ :;o(e§)2xt',/cm3_ (32)

Thus, a power lux in the range ~ 0.7 — 2.3 W/cm? is required to accelerate the zero energy
electrons to large energies in the ionosphere. Let us for the moment suppose that such a power
flux can be achieved. We then estimate the size of the acceleration region. The main motion of
the particle is in the z—direction and the particles execute Larmor motion in the perpendicular
motion with r; = v;v/Q. Using (30) and setting z ~ rp, we obtain yv /e ~ NyQt. For the
parameters in Fig. 10 and for Qt = 3000, we have vv, /c ~ v ~ 512. Thus, the escape of the
particles occurs in the z—direction. Even though the evolution of < 2 >, 2 10 in time is insensitive
to the wave amplitude, more particles can be accelerated in less time 2t larger wave amplitudes.
For ¢ —~ 0.1 — 0.2. the typical distance that is required for accelerating a significant number of
particles toy 2 10 is of the order of 10 — 20 km as shown in Fig. 10. Thus. considering a region of
ionosphere 10 km x 20 km. the total power required is ~ 1.4 x 10'% — 4.6 x 10'* W. If we launch !
msec pulses with a dutv cycie of 1 per minute, we find an average power of ~ 10" — 10> W. These
values are hevond the present-day capabilities.

In view of our findings, we are forced to consider ways to reduce the stochasticity threshold.
There are several possibiiities: (1) Preaccelerate the electrons. This involves 2 two-step process.
First, the particles are accelerated to weakly rolativistic energies and then the rf waves are applied.
Since the €, is lower at higher energies, we could make the particles stochastic for lower rf
amplitudes. The dependence of €1, on energy is. hiowever, weak and this technique can at most
lower the ampiitude required by a fartor of 2. (2) Apply several waves at closely spaced frequencies.
['he problem is that if the wave amplitudes are too 1 = helow the €y, value of a single wave. the
resulting diffusion wouid be limited and slow. i3) The magnetic tield in the ionosphere 1s weil

represented by - magnetic dipale. Thus, a more realistic application to the ionosphere reanires

3




taking into account the inhomogeneity of the magnetic field. It is well known that even a weak
inhomogeneity in the magnetic field can lower the €n,s by as much as 2 orders of magnizuce.
Physically, the changein B, is equivalent to having several resonances for a given harmonic numuber.
Thus, the resonances are more tightly packed and the overlap occurs at smaller amplitudes tiiin
in the uniform field limit. In order to have a strong enough diffusion. however. the wave ampiitude
cannot be much smaller than in the uniform field limit.

Finally, the self-consistent effects are expected to play a role once a significant number of
particles are accelerated. The study of self-consistent effects as well as mode conversion are currently

underway, and preliminary results were reported by Akimoto and Karimabadi (1989).

VII. Conclusions

In this work, we have carried out a detailed comparison of the theoretical stochasticity threshold
with exact orbit calculations. We reduced the diffusion equation to a one-dimensional form by
transforming to a coordinate system where the Hamiltonian surface is one of the axes. We then
constructed a model for the diffusion coefficient and wrote a finite element code that solves the
diffusion equation. This code has been carefully compared with a particle code, and it shows
excellent agreement over a wide range of frequencies and wave amplitudes. We applied our results
to the problem of radio-frequency acceleration of the electrons in the ionosphere. We found that
the powers needed are beyond present-day technology. We then discussed several ways to overcome
this problem.

Finally, we emphasize that the method of reducing the diffusion equation to one dimension and
the code that we have developed are quite powerful and are expected to find many applications.
We are currently applying the above techniques to the prcblem of particle acceleration in planetary

shocks.
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Appendix A: Diffusion Equation Along tne H-surface

In this appendix. we show how the diffusion equation can be redured to a one-dimensional
form by choosing a coordinate system that has /[ as one of the axes. A given H —surface is given
by

H, = ncy, - pyw/ky. {Al)

\We can rewrite the equation for H, as

L LA R S ) _
ey e Ty +1 [[o ) (-"\-23)
me ey mec?  apg '
where
1
aH:—\F—l‘ (:\Zb)
1
H
bH = 'To, (AL?C)
)

The H —surfaces are not confocal since both agy and by dep2nd on H. Thus, a confocal orthogonal
transformation cannot be made. In fact there is no simple transformation from (py,p.) to an
orthogonal coordinate system with the H —surface as one of the axes. Fortunately, the orthogonality
condition is not necessary, and, as we now show, any component of the diffusion tensor not parallel
to the H —surface is zero.

Let us consider the diffusion equation under the transformation from (py,py) to (H,g) where

g is arbitrary for the moment. We start with (19) rewritten in tenso. notation:

of 1 0 af
2o (pp 2L, A
ot R(jpl< DJ()pJ> ( 3)

where R = p, is the Jacobian of the transformation from Cartesian to cyvlindrical coordinates.

From the chain rule, we have

_0_. - gﬂ;i A4
ap, Ip, Jux’ s
where 31 = H aund y, = g. Using this in (A3), vields
o L0k (0w it
o R dp; Jyx Y dp; iy
d <0yk o D (?_f) dur Of 0 (1 0.’/’:)
= Uy - S ir-watr-weniy-onall Bh~terl I )
dyx \ Op. ~ ~ 0p, Que 7Op; Oys Oyx \ R Op. R
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or
Of_ J <- 0}') D‘_Hygi')f K| (_1_%)
gt~ oyx \ M 0ye Y Op; Oye Dy \ R Opi /)~
where Dy, is the new diffusion tensor and is given by

- Oy ~ Jy
Dig = — :j?—t'~
Op; op;j

Writing out the various components of the diffusion tensor explicitly, we have

[ 8H\® . dH 0H [ OH\’®
Dur = 2_| D, (m) 2D g apy TP ) | s
[ 99 \* dg dg (agﬂ e
= ) +2Dyy sea-+Dir (5 ) |, ASb)
Dyg Z,LD""‘(apu) +2Dyy, op 0ps U \ps (A8b]
[ 8H 9dg (OH Jg g 6H>
Hg Z | P ap" 0p“ L, (91)” opL Bp" dp,

13

OH Bg] X
— 1, A8
Rl P (A8c)

and

DHg = Dy;{. {A8d)

The derivatives are evaluated at the crossing points of a given H —surface and the resonance curves.

In particular, we find
0H Q ¢ O0H

g _ 2t o (A0}
dpy wpLVyOpy

It follows that Dy is identically zero. Furthermore, using the relation (A9) and substituting 122)
in (A8c), we find that Dy, is identically zero independent of the form of g. So. the new coordirate
system need not be orthogonal. The fact that Dy, = Dyy = 0 is hardly surprising since both
Dygy and Dyy involve integrals over the quantity ff which is zero.

A useful choice for g is the relativistic factor v. The surfaces of constant = define circies in

momentum space. The o!d variables are realted to the new variables by

p H N
LA (v = =)y, (Aiues
mc mc

. IR L |
L E AR iy e —) . (A10b)
mec me




and the Jacobian of the transformation in dimeuvsionless units is given by
R =Ny, {All)

which is valid for a # 90°. Replacing ¢ by 7, and using (AS8) through (All) in (A6) and (A7), we

obtain the diffusion equation (23a) and diffusion coefficient (23b).
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